Guide to safeguarding common machinery and plant
Workplace Health and Safety Queensland
## Contents

Section 1 – What is machinery and plant?  
Section 2 – The risk management process  
2.1 Identifying machinery or plant hazards  
2.2 Assessing the risk of identified hazards  
2.3 Deciding on control measures  
2.4 Implementing control measures  
2.5 Monitoring and reviewing effectiveness of control measures  
2.6 Keeping documentation and records  
Section 3 – Guard design  
3.1 Types of guards  
3.1.1 Fixed guards  
3.1.2 Interlocking guards  
3.1.3 Automatic guards  
3.1.4 Distance guards  
3.1.5 Trip guards  
3.2 Basic rules for guard design  
3.3 Servicing considerations  
3.4 Ergonomic considerations  
3.4.1 Reach measurements  
3.4.2 Guard placement  
Section 4 – Guards for different machine types  
4.1 Exposed rotating cutting processes  
4.2 Pulleys and drives  
4.3 Rotating shafts and rollers  
4.4 Safety devices  
4.5 Combination of guarding and safety devices  
4.6 Safe work rules and practices  
4.6.1 Isolation  
4.6.2 Emergency stop devices  
4.6.3 Inspection, cleaning, repair, maintenance and emergency procedures  
4.6.4 Opening and removing guards
4.6.5 Weight 27
4.6.6 Interactions 27
4.6.7 Colour coding 27

Section 5 – Safeguarding of power presses, conveyors and robotics 28
5.1 Power stamping presses 28
5.1.1 Hazards and risks 28
5.1.2 Control measures 28
5.2 Press brakes (mechanical and hydraulic) 30
5.2.1 Hazards and risks 30
5.2.2 Control measures 30
5.3 Conveyors (bulk handling) 31
5.3.1 Hazards and risks 31
5.3.2 Control measures 31
5.4 Robotics 33
5.4.1 Hazards and risks 33
5.4.2 Control measures 34

Section 6 – Other machinery safety issues 37
6.1 Work organisation 37
6.1.1 Layout 37
6.1.2 Housekeeping 37
6.1.3 Work practices 38
6.2 Work environment 38
6.2.1 Dust 38
6.2.2 Lighting 38
6.2.3 Noise 39
6.2.4 Hot and cold environments 39
6.2.5 Ventilation 39
6.2.6 Confined spaces 40
6.2.7 Electrical safety 40
6.3 Minimising human error 40
6.4 Registrable plant 42
6.5 Registrable plant design 42
Section 7 – Further information 43
7.1 Standards Australia 43
7.2 Consulting engineers 43
7.3 Workers 43
7.4 Industry associations and similar workplaces 43
7.5 Workplace Health and Safety Queensland 43
Appendix 1 – Machinery and plant hazard list 44
Appendix 2 – Dictionary of defined terms 47
Appendix 3 – Risk Assessment Form 50
Appendix 4 – Risk Assessment Template 52
Appendix 5 – Australian Standards 53

Disclaimer
The information provided in this publication is distributed by the Queensland Government as an information source only. The information is provided solely on the basis that readers will be responsible for making their own assessment of the matters discussed herein and are advised to verify all relevant representations, statements and information.

For specific information on matters discussed in this publication please refer to the Workplace Health and Safety Act 1995.

© The State of Queensland (Department of Industrial Relations)
April 2006
Purpose

The Guide to safeguarding common machinery and plant has been developed to help people conducting a business or undertaking (including employers and self-employed people) and workers to ensure common machinery and plant in the workplace is safe and without risk to health and safety.

This guide raises awareness of a range of hazards associated with common machinery and plant, as well as risks that may result from these types of hazards. Practical advice is provided in relation to the methods that can be used to safeguard common machinery and plant in the workplace, and advice on how to select and implement the appropriate safeguards.

This is achieved by using a risk management approach whereby hazards are identified, the degree of risk of each hazard is assessed, control measures are identified and implemented and finally, monitoring and review of the effectiveness of the chosen control measures is performed.

It should be noted that the information contained in this document is intended for guidance only, and that there may be additional hazards and subsequent risks at your workplace which have not been specifically addressed in this guide. You are still required under the Workplace Health and Safety Act 1995 to identify and assess these risks and ensure that appropriate control measures are implemented and reviewed to prevent or minimise exposure to these risks.

Note: This guide should be read in conjunction with the primary source document, the Plant Code of Practice 2005. In addition to this, other important documents that should also be read in conjunction with this guide are the Workplace Health and Safety Act 1995, Risk Management Advisory Standard 2000, Australian Standard 4024.1 – 1996 Safeguarding of machinery - General principles, other Australian Standards as identified in Appendix 5 and relevant manufacturer's instructions and operator's instructions/manuals.
Section 1 – What is machinery and plant?

Machinery is a collective term for machines and their parts. A machine is considered to be any apparatus that has interrelated parts and is used to perform work.

Plant has a broader meaning and includes machinery. Other items of common plant in the workplace include equipment, implements and tools. Fittings, connections and accessories are also considered to be plant.

This guide focuses on the guarding of machinery commonly found in workplaces, but also considers other items of plant. To remind readers of this, the guide discusses machinery and plant together.

Section 2 – The risk management process

The hazards associated with operating common machinery and plant are not always obvious, and there are generally a number of elements that will affect safe operation. The risk management approach will help you make a judgment about the risks associated with these hazards and implement appropriate control measures.

The risk management approach is outlined under the Workplace Health and Safety Act 1995 and involves:

1. identifying hazards
2. assessing risks that may result because of the hazards
3. deciding on appropriate control measures to prevent or minimise the level of the risks
4. implementing the chosen control measures
5. monitoring and reviewing the effectiveness of the chosen control measures.

These five steps are commonly known as the risk management process. This process is outlined comprehensively in the Risk Management Advisory Standard 2000.

2.1 Identifying machinery or plant hazards

The first step in assessing the risks associated with machinery and plant is to identify all items of plant used in the workplace. An inspection of the workplace should be carried out looking for any of these items. The desired outcome of this step is a list of all items of machinery and plant that pose potential hazards.

The hazards associated with machinery and plant include mechanical, biological, chemical, psychological and ergonomic hazards. Mechanical hazards are a major cause of injury associated with the operation, maintenance and repair of machinery and plant. Mechanical hazards include cutting and severing, crushing, shearing, impact and entanglement.

Start by identifying all machinery and plant operated at the workplace and associated with any work performed. Include common items that pose potential hazards that may not normally be thought of as ‘machines’ or plant. These items may include office machines, such as paper guillotines and automatic staplers.

Check both inside and outside the work environment for machinery and plant that may pose a risk to people in the workplace (e.g. garbage compactors operated outside). If work is normally done at other locations, mobile plant and tools used at these locations should also be included.
Once all machinery and plant has been identified, the hazards associated with these items can be identified. Critically inspect each piece of machinery and plant and the way it is operated to identify any parts, processes or operating procedures that may cause harm.

A method of identifying machinery and plant hazards is to consider the following factors:

- tasks (operating, cleaning, adjusting, setting-up, maintaining, repairing or working on a machine, e.g. power press, food slicer)—consider all activities that take place
- locations (proximity to other machines and work processes, fixed plant, portable plant and tools)
- installation of plant (safe and correct installation)
- production processes (forming, finishing)
- use of mobile plant at other locations
- safe transportation of mobile plant.

By considering these factors, the full range of hazards associated with the machinery or plant can be identified.

Where machinery and plant hazards are not immediately obvious, there are many other activities that can be undertaken to help identify them. These include:

- testing, particularly of plant and other equipment and noise levels
- scientific or technical evaluation
- analysing records and data including workers’ compensation claims, incidents and near misses, worker complaints, sick leave and staff turnover
- acquiring information from designers, manufacturers, suppliers
- acquiring information from other organisations such as unions, employer bodies, occupational health and safety consultants
- environmental and medical monitoring
- undertaking worker surveys.

Examining the activities performed at the workplace and the related danger zones (such as moving parts) of plant and machinery will assist in identifying hazards. These hazards may include, but are not limited to those illustrated below.

These machines and items of plant are shown in their unguarded state to demonstrate the hazards and danger zones.

Illustration 1 - drawing in points between two counter-rotating parts
Illustration 2 – in-running nip points between rotating and tangentially moving surfaces

Illustration 3 - shear points between a machinery part and a work piece

Illustration 4 - cutting areas on a band saw

Illustration 5 - impact and crushing areas
Illustration 6 - entanglement caused by contact with a single rotating surface

Illustration 7 - stabbing points caused by moving parts of machinery or material

Illustration 8 - abrasion areas

Illustration 9 - flying particles

Illustration 10 - protrusions can cause injury from entanglement
Many of the types of hazards illustrated can usually be effectively managed by the installation of physical barriers. Examples of ways to control these hazards are addressed in section 3 (Guard design) and section 4 (Guards for different machine types).

Before proceeding to the next step of assessing risk, you should identify if the hazards are issues about which there is a regulation or code of practice (made under the Workplace Health and Safety Act 1995) or guidance material (produced by Workplace Health and Safety Queensland). The Code of Practice for Plant 2005 also encourages people to consult a range of Australian Standards and overseas standards to assist in the process of ensuring machine safety and safe operation.

It is also important to consider that there are other specific hazards associated with machinery and plant that are not associated with the actual mechanical operation. The risks associated with these hazards should also be identified, assessed and managed. These risks include:

• release of substances—machinery or processes may release or produce substances or materials, maybe as a by-product, which is hazardous. Examples include fumes, chemicals and metal filings
• noise—noise levels may change at different stages of use
• hot or cold machinery or plant parts—sources of heat can include friction, molten material, hot metal shavings, hot gases, naked flames, radiant heat.

Section 6 (Other machinery safety issues) provides more information in relation to these specific issues.

### 2.2 Assessing the risk of identified hazards

A risk assessment seeks to prioritise identified hazards so that risks associated with each hazard (those that have the potential to cause harm) can be eliminated or reduced. Identified hazards are assessed to determine their real potential to cause injury.

Where a hazard is identified, an assessment of risks associated with the hazard should be undertaken. Separate risk assessments should be carried out for each machine and any associated system of work used with that machine. If any alteration or modification is made to the machine, a risk assessment should be repeated.

There are three steps in assessing risks:

**Step 1** For each hazard, estimate the **likelihood** of an incident or accident occurring at the workplace or while conducting the work activity. Existing control measures should be considered separately, as they may not necessarily control the risk, but create additional hazards.

**Step 2** For each hazard, estimate the **consequences** of an incident or accident occurring at the workplace or while conducting the work activity. Existing control measures should be considered separately, as they may not necessarily control the risk, but create additional hazards.

**Step 3** Combine these estimates of likelihood and consequence to determine a risk rating for each hazard. This can be easily read from the Risk Assessment Priority Chart. This chart ranks the risks in terms of their priorities.

For example if the possibility of injury from a particular item of plant or machinery plant is POSSIBLE (could happen, but rarely) and the consequences of such an injury are MAJOR (serious injuries), then the risk score is 4.
### Risk Assessment Priority Chart

<table>
<thead>
<tr>
<th>Likelihood: Probability</th>
<th>Consequences: How severely could it hurt someone?</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EXTREME</strong></td>
<td>MAJOR</td>
</tr>
<tr>
<td>death, permanent disablement</td>
<td>serious bodily injury</td>
</tr>
<tr>
<td><em>catastrophic</em> kills, disables, permanent injury*</td>
<td><em>major</em> significant injury, <em>not</em> permanent</td>
</tr>
</tbody>
</table>

**Very likely**  
Could happen frequently  
1  2  3  4

**Likely**  
Could happen occasionally  
2  3  4  5

**Possible**  
Could happen but rarely  
3  4  5  6

**Unlikely**  
Could happen, probably never will  
4  5  6  7

The following scores indicate how important it is to do something about each risk:

<table>
<thead>
<tr>
<th>Score</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 or 3</td>
<td>Do something about these risks immediately</td>
</tr>
<tr>
<td>4 or 5</td>
<td>Do something about these risks as soon as possible</td>
</tr>
<tr>
<td>6 or 7</td>
<td>These risks may not need immediate attention</td>
</tr>
</tbody>
</table>

Once each risk has been rated, a prioritised list of workplace risks requiring action can be developed.

A template for a Risk Assessment Form is included in appendix 3. This will help to assess the risks posed by machinery. This form can be photocopied as many times as needed. It is suggested that one form be used per machine, or part of a machine if there are several hazards. This form may be adapted for other things such as purchase, installation, maintenance and work processes relevant to machines in the workplace.

### 2.3 Deciding on control measures

Once each hazard has been rated, a prioritised list of workplace risks requiring action can be developed. The Risk Assessment Form (appendix 3) will help to assess the risks posed by machinery.

Once a prioritised list has been made, control measures to eliminate or reduce the assessed risks can be decided on. Where an assessment identifies a need to control a risk to health and safety,
that risk should be eliminated, or where it cannot be eliminated, minimised to a safe level. Control measures should be chosen from the most preferred method to the least preferred method by using the hierarchy of control.

Under the Workplace Health and Safety Act 1995, a person must consider the appropriateness of control measures in the following order:

A. eliminate the hazard or prevent the risk
B. if eliminating the hazard or preventing the risk is not possible, minimise the risk by the control measures listed below. These control measures must be considered in the following order:
   1. substitute the hazard with a hazard of lesser risk
   2. isolate the hazard from anyone who may be at risk
   3. minimise the risk by engineering means
   4. apply administrative measures
   5. use personal protective equipment.

The hierarchy of control measures is explained in more detail below.

**Elimination**—this is the most effective method of control and should always be attempted first. For example, discontinue dangerous practices or remove or dispose of dangerous equipment.

**When elimination is not practicable**
Eliminating a machine or process from your workplace may not always be practicable. In these situations the following control measures should be considered in the following order.

**Substitution**—replacing a material or process associated with plant with a less hazardous one will reduce risk. For example, replace an unstable pedestal fan with a wall or ceiling mounted model, or use a less hazardous process or part such as moulded plastic process instead of pressed metal manufacturing process.

**Isolation**—isolating (or separating) a process or machine from workers can be achieved by either distancing the process or machine with the rest of the workplace, or by inserting a physical barrier between the process or machine and worker. For example, install acoustic booths around noisy equipment or use remote handling equipment such as a push-stick.

**Engineering**—the design/redesign and installation of equipment to counteract hazards are considered engineering controls. For example, install an exhaust ventilation system to extract dangerous fumes, or redesign an electrical system to allow for the installation of emergency stop buttons within easy reach of operators of machinery or plant.

**When exposure is not or cannot be minimised by other means?**
Control by the above means is not always practicable. Even where one or more of the above control measures has been implemented, additional control measures should be considered.

The following methods should not be relied upon as the primary means of risk control, until the above controls have been considered. They are dependent on human behaviour and require management, enforcement and commitment to work effectively. They may be used as an interim measure until higher level controls are implemented.

**Administration**—administration controls are procedures or instructions you can put in place to minimise exposure to a risk. These controls can include the time of work, hours of work, who does the work and who has access to work areas, machinery or plant. For example, train workers in the proper procedures and processes for operating machinery or plant, and limit exposure to or the amount of time spent doing hazardous work activities.
**Personal protective equipment**—personal protective equipment means clothing, equipment or substances which, when worn correctly, protect part or all of the body from risks of injury or disease at work or in the workplace. For example, it includes protective eyewear, protective hearing devices, sturdy gloves or mesh gloves to prevent cutting injuries. The control of exposure to machinery or plant risks should be secured by one or more measures other than the provision of personal protective equipment. Use of personal protective equipment is the least effective method of controlling risk, although a long-term strategy using other methods may require the short-term use of personal protective equipment to attain this aim. For example, you may decide to replace noisy machinery or plant with a quieter version. In the interim, protective hearing devices are provided to workers exposed to the noisy machinery or plant.

To prevent or minimise exposure to a risk, a combination of the above methods can be implemented concurrently. For example, a combination of isolation, administrative and personal protective equipment control measures can be used at the same time. By using a combination of control measures, risk is reduced further and there is less reliance on a single control measure should it fail.

The chosen method of controlling the risk should be recorded. A sample format of recording control measures can be found in the *Risk Assessment Form* (appendix 3). If the preferred control measure cannot be implemented immediately, the form can be used to note the controls intended to be used immediately as a short-term solution, and what is intended to be done later as a long-term solution. Implementation timeframes should be recorded and the document reviewed regularly.

### 2.4 Implementing control measures

The selected control measures need to be implemented for machinery or plant requiring safeguarding to ensure there is no risk to workers or others. This means undertaking those activities necessary to allow the control measures to function or operate effectively. Implementing control measures involves:

- **Developing work procedures**
  Work procedures should be developed in relation to the new control measures to ensure their effectiveness. Management, supervision and worker responsibilities need to be clearly defined in the work procedures. In relation to the use of machine guarding, the manager’s role may involve ensuring the appropriate guarding is purchased and that it is installed correctly. The supervisor’s role may involve ensuring the workers operate the machine only with the guarding in place. The role of workers may involve using the machine with guarding in place as instructed or the maintenance of the machine and guard.

- **Communication**
  Workers should be informed about the control measures to be implemented. It is important to clearly communicate the reasons for the changes. Information may also need to be provided to others who may enter the workplace, including cleaners, visitors and contract staff.

- **Providing training and instruction**
  Training and instruction should be provided for the workers, supervisors and others in relation to the new control measures. This may include safe use and operation of guards, breakdown procedures, and repair and maintenance as appropriate.

- **Supervision**
  Adequate supervision should be provided to ensure that the control measures are being used correctly.
• Maintenance

Maintenance relating to control measures is an important part of the implementation process. Work procedures should clearly identify maintenance requirements to ensure the ongoing effectiveness of the new control measures.

2.5 Monitoring and reviewing effectiveness of control measures

The final step in the risk management process is to monitor and review the effectiveness of control measures. For this step, it can be useful to ask questions such as:

• Have control measures been implemented as planned?
• Are these control measures being used, if so, are they being used correctly?
• Are control measures working?
• Have changes made to control exposure to the assessed risks resulted in what was intended?
• Has exposure to the assessed risks been eliminated or adequately reduced?
• Have implemented control measures resulted in the introduction of any new hazards?
• Have implemented control measures resulted in the worsening of any existing hazards?

In order to answer these questions, you can:

• consult with workers, supervisors and health and safety representatives
• measure exposure (e.g. take noise measurements in the case of isolation of a noise source)
• refer to occupational health and safety consultants and representatives of industry associations, unions and government bodies
• refer to manufacturer’s instructions
• monitor incident reports.

You should set a date to review the entire workplace health and safety risk management process. Reviews should be conducted at least once every 12 months, however may be required more frequently depending on individual variables at the workplace. The frequency of reviews should be determined by the risk management process.

Risk management is ongoing and the results of risk management should be updated, whether or not the process is complex and whether or not the results are recorded. The risk management process should be repeated at intervals and whenever there is reason to suspect the results are no longer valid because:

• new plant is introduced
• plant is modified so it deviates from the original design
• there is a change in work practices associated with plant
• there is a complaint from workers.

2.6 Keeping documentation and records

Adequate recording of the risk management process undertaken in regards to plant and machinery will help you to demonstrate that you have been actively working to ensure workplace health and safety, should you need to prove this.

Keeping records will also help you keep track of what you have done and are planning to do. This should maximise the effectiveness of the process. A template for recording the entire risk management process is provided in appendix 4. This template can be photocopied as many times as needed. It is suggested that one form be used per machine, or part of a machine if there are several hazards. This template should be used in conjunction with the Risk Assessment Form (appendix 3).
The detail and extent of recording will depend on the size of your workplace and the potential for major workplace health and safety issues.

**Case study**

There are a number of ways in which the risk management process can be carried out. A case study has been used in this section of the guide to demonstrate one method of conducting the risk management process. This case study assesses the risk from mechanical type hazards, specifically cutting and severing hazards associated with using a machining centre.

A machining centre is a numerically controlled machine tool, capable of performing multiple machining operations and able to change tools automatically from a magazine or similar storage unit. The operations that may be performed include milling, boring, drilling, cutting and tapping.

It should be noted that cutting and severing hazards are just one of the many mechanical hazards associated with machinery and plant. Other mechanical hazards include crushing, shearing, impact and entanglement. There are also other types of hazards, other than mechanical hazards, which are associated with machinery and plant. These hazards include biological, chemical, psychological and ergonomic hazard types. For the purpose of the case study, only cutting and severing hazards are outlined.

When identifying hazards associated with plant and machinery, it is beneficial to list the situations or tasks where the hazard may occur, any associated activity with these situations and the related danger zones.

Appendix 1 contains a list of hazards and some descriptions of these hazards as they relate to machinery and plant. This list should be consulted when undertaking a risk assessment on machinery and plant and will assist to identify hazards, associated activities and situations and danger zones.

The case study below lists the hazardous situations, associated activities and related danger zones relevant to cutting and severing hazards present when using a machining centre.

1. **Identify hazards**

<table>
<thead>
<tr>
<th>Description of hazard</th>
<th>Example of related hazardous situation</th>
<th>Associated activity</th>
<th>Related danger zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting and severing</td>
<td>Spindle or tool running or cutting</td>
<td>Spindle running</td>
<td>At spindle or tool</td>
</tr>
</tbody>
</table>

2. **Assess risks**

There are three parts to this step:

(a) Estimate the likelihood of an incident or accident occurring at the workplace.

**Likelihood: How likely that it could happen?**

- **Very likely**    could happen frequently
- **Likely**         could happen occasionally
- **Unlikely**       could happen but rare
- **Very unlikely**  could happen, probably never will
In this example, the possibility (likelihood) of injury from a person coming in contact with a running or cutting spindle or tool is assessed as likely, i.e. it could happen occasionally.

(b) Estimate the consequences of an incident or accident occurring at the workplace.

**Consequences: How severely could it hurt someone?**

- **Extreme**: death, permanent disablement
- **Major**: serious bodily injury
- **Moderate**: casualty treatment
- **Minor**: first aid only, no lost work time

The consequence of the running or cutting spindle or tool coming in contact with a person is assessed as extreme, i.e. death or permanent disablement (such as an amputation).

(c) Combine these estimates of likelihood and consequences to determine a risk rating for each risk. This can be easily read from the Risk Assessment Priority Chart below. This chart ranks the risks in terms of their priorities.

**Risk Assessment Priority Chart**

<table>
<thead>
<tr>
<th>Likelihood: Probability How likely that it could Happen?</th>
<th>Consequences: How severely could it hurt someone?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXTREME death, permanent disablement MAJOR serious bodily injury MODERATE casualty treatment MINOR first aid only, no lost time</td>
</tr>
<tr>
<td>Very likely Could happen frequently</td>
<td>1</td>
</tr>
<tr>
<td>Likely Could happen occasionally</td>
<td>2</td>
</tr>
<tr>
<td>Possible Could happen but rarely</td>
<td>3</td>
</tr>
<tr>
<td>Unlikely Could happen, probably never will</td>
<td>4</td>
</tr>
</tbody>
</table>

The following scores indicate how important it is to do something about each risk:

<table>
<thead>
<tr>
<th>Score</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 or 3</td>
<td>Do something about these risks immediately</td>
</tr>
<tr>
<td>4 or 5</td>
<td>Do something about these risks as soon as possible</td>
</tr>
<tr>
<td>6 or 7</td>
<td>These risks may not need immediate attention</td>
</tr>
</tbody>
</table>
In this example, a risk rating of 2 is calculated. This score means that something must be done about this risk immediately. The assessment can now be repeated for all other identified hazards and situations.

3. Determine controls

<table>
<thead>
<tr>
<th>Associated activity</th>
<th>Related danger zone</th>
<th>Score</th>
<th>Risk assessment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle running</td>
<td>At spindle or tool</td>
<td>2</td>
<td>Do something about these risks immediately</td>
<td>Elimination not possible. Substitution not possible at this point in time and will be considered as a long-term solution at the end of the machining centre’s life. Machining centres will be safeguarded wherever possible by fixed and/or interlocking moveable guards. If floor-mounted, the guards shall be securely fixed, of adequate height and fixed at a sufficient distance from the danger zones. Protective devices may be used where fixed and interlocking guards are not possible (see AS 4024). Means shall be provided for the movement of machine axes for emergency purposes (e.g. release of trapped people). These means are for example: a) with power off:  - relief valves to depressurise systems under pressure  - manual release of power-actuated brakes provided that weight-balancing exists b) with power on:  - manual control facilities of power-piloted valves/drives  - control facilities to start counter motions.</td>
</tr>
</tbody>
</table>

Controls would now need to be chosen for all other hazards associated with the machining centre. These would be considered in order of the hazards, with the highest risks first.
4. Implement controls

<table>
<thead>
<tr>
<th>Associated activity</th>
<th>Related danger zone</th>
<th>Implementation</th>
</tr>
</thead>
</table>
| Spindle running     | At spindle or tool  | Prior to interlocking moveable safeguards being fitted, the following activities will be performed. These activities relate to the use of the machining centre after being fitted with the safeguards:  
(a) work procedures will be developed, with input from workers, for machine centre use, cleaning, maintenance and emergencies  
(b) training, instruction and information will be provided to workers regarding operating, cleaning, maintenance and emergencies  
(c) supervision will be provided to ensure correct use and that procedures are followed. |

5. Monitor and review controls

<table>
<thead>
<tr>
<th>Associated activity</th>
<th>Related danger zone</th>
<th>Monitoring and reviewing</th>
</tr>
</thead>
</table>
| Spindle running     | At spindle or tool  | Supervisor to continually monitor compliance with developed procedures.  
Retraining (including instruction and information provision) to be provided when there is a change to work practices or machine use and at least every 6 months.  
Operation, cleaning, maintenance, emergency and other procedures will be reviewed when there is a change to work practices or machine use and at least every 6 months.  
Safeguard to be maintained regularly (at least every month).  
Safeguard to be reviewed as control when there is a change to work practices or machine use and at least every six months.  
When the time comes to replace the machine, elimination and substitution (safer alternatives) will be considered. |

Monitoring and review procedures would now be developed for all hazards associated with the machining centre.
Section 3 - Guard design

3.1 Types of guards

Technical assistance may be found in relevant Australian Standards. The standards with particular relevance to safeguarding common machinery and plant are listed in Appendix 5, together with a brief description of their contents. These standards should be consulted for additional information.

There are a number of different types of guards available, all suited to particular purposes. Depending on the situation, a combination of two or more of the following measures may be used to ensure workers' safety. The range of guards includes but is not limited to fixed, interlocking, hinged, movable barrier, automatic, distance and trip guards. Examples of these types of guards are detailed below.

3.1.1 Fixed guards
Fixed guards are stationary guards and prevent contact between moving machinery parts and any part of the body. They offer protection only when properly fixed in position. Fixed guards should be easy to remove and replace, but only be able to be opened or removed with the aid of a tool and when the machine is not in operation.

Illustration 11 - An example of a fixed guard.

3.1.2 Interlocking guards
Interlocking guards prevent machinery and plant from being operated, unless the guard is in place. Interlocking guards such as enclosure guards are known as movable guards and have the moving part interconnected with the control system. Interconnections are usually electrical, mechanical, hydraulic or pneumatic.
Examples of movable interlocking guards, which are interlocked with the power source of the hazard to ensure that whenever the guard door is not closed the hazard power is switched off, are shown below:

Illustration 12 - An example of a hinge door guard (interlocking movable guard)

Illustration 13 - An example of a sliding door guard (interlocking movable guard)

3.1.3 Automatic guards

Automatic guards are self-adjusting and automatically move into position as the machine or cycle starts. They are also known as push-away guards. These are only suitable on slow machines.

Illustration 14 - An example of a push-away guard (automatic guard)
3.1.4 Distance guards
Distance guides prevent access to dangerous areas through a barrier or fence. Any access points through the guard (e.g. gates and doors) must be secured with a lock or interlocking system.

Illustration 15 - An example of a distance guard fitted to the press brake

3.1.5 Trip guards
Trip guards are presence-sensing and stop the machine when a person gets into a position where they are liable to be injured. Photoelectric curtains, laser scanners and pressure mats are examples of this type of guard.

Illustration 16 - An example of a photoelectric light curtain used as a trip guard. When any of the beams are blocked by intrusion towards the hazard area, the light curtain control circuit switches off the hazard power.

AS4024.1 Safeguarding of machinery – General principles provides more information in relation to types of guards and categories of reliability. This standard should be consulted for additional information.

AS61508.1 Functional safety of electrical/electronic/programmable electronic safety-related systems – General requirements provides more information in relation to safety integrity levels. This standard should be consulted for additional information.
3.2 Basic rules for guard design

The primary function of a guard is to provide a physical barrier between a worker and the dangerous parts of machinery or plant. When selecting control measures, careful attention to design and layout at the outset can avoid later problems. Basic rules for guard design include:

- ensure the materials used are of suitable strength and good quality
- having any sort of guard may not be enough. Poorly designed or inappropriate guarding has contributed to injuries from machinery or plant. Ideally a guard should be custom-designed for the machine and the work process
- interlock devices may need to be used in conjunction with other types of guarding to ensure safety
- avoid second best when designing a guard. If a guard is used from another machine, it must be checked carefully to ensure that it is not defective, that it fits the target machine, is of suitable strength and quality for the new application and that it achieves the aim of controlling the risk presented by the target machine.

In determining the most appropriate control measure for the hazard, risk and machine, other issues or risks should also be taken into consideration. Guarding can play a useful role in both dust and noise reduction. In many cases, issues of wear, heat and ventilation affect operating efficiency and may also have consequences for worker health and safety.

3.3 Servicing considerations

Guards should be designed for easy removal and replacement. These types of guard make tasks such as regular cleaning, maintenance and machine adjustment or belt changes easier, particularly if this work needs to be done frequently. Safe procedures for removal of guards for repair, or to clear jams or breakdowns must be considered. In all cases, guards should be designed so they can only open or be removed with the aid of a tool and when the machine is not in operation.

Servicing issues include:

- documented safe work procedures, including reference to manufacturer’s recommendations
- proximity to hot or sharp parts
- cool down or warm up periods
- lock-out provisions or permission for guard removal
- sufficient room to perform tasks without risk of injury or strain
- any additional hazards arising from maintenance procedures (e.g. testing while machine is unguarded ['dry run'], working at heights, use of solvents)
- maintenance of servicing records.

3.4 Ergonomic considerations

The following tables and illustrations will provide help to assess where and what sort of guarding is needed to keep a danger point on a machine safely out of reach, taking into account the physical characteristics of workers.

3.4.1 Reach measurements

Machines are designed for an average worker—typically a 172 cm (5 ft 8 in) male. If workers are significantly taller or shorter than 172 cm, then employers should consider whether the standard machine guarding methods and work processes are still safe.
The design and positioning of guards should provide at least the following clearance:

<table>
<thead>
<tr>
<th>Reach</th>
<th>Minimum distance assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm reach</td>
<td>Greater than or equal to 850 mm from under arm to fingertip</td>
</tr>
<tr>
<td>Elbow reach</td>
<td>Greater than or equal to 550 mm from the inside elbow to fingertip</td>
</tr>
<tr>
<td>Wrist reach</td>
<td>Greater than or equal to 230 mm from wrist to tip of middle finger</td>
</tr>
<tr>
<td>Finger reach</td>
<td>Greater than or equal to 130 mm</td>
</tr>
<tr>
<td>Vertical reach</td>
<td>2500 mm maximum when standing on toes</td>
</tr>
</tbody>
</table>

### 3.4.2 Guard placement

The size of mesh or other openings in the guard and the distance of the guard from the danger point can be selected based on the following guide:

- **Mesh size openings up to and including 9 mm**
  - Distance of guard from danger point virtually the same
- **Mesh size over 9mm but less than 40 mm**
  - Guard at least 200 mm from danger point
- **All types of guards**
  - Distance between bottom opening and floor not to exceed 250 mm

**Simple gap/distance formula**

The following formula provides an easy method for determining the required gap or mesh openings, and the distance the guard should be from the danger point:

\[
\text{Gap} = \frac{\text{Distance}}{10} + 6\text{mm}
\]

<table>
<thead>
<tr>
<th>No admittance</th>
<th>Reach restricted to root of finger</th>
<th>Reach restricted to root of thumb</th>
<th>Reach restricted to hand thickness</th>
</tr>
</thead>
</table>
Reaching down and over

In the following diagram and table:

A = distance of danger point from the floor or working surface
B = height of the barrier
C = horizontal distance to be maintained between edge of barrier and danger point

![Diagram showing reaching down and over](image)

**Note:** Barriers must not be able to be stepped over.

<table>
<thead>
<tr>
<th>A – distance of danger point from floor (mm)</th>
<th>B – height of the barrier (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2400  2200  2000  1800  1600  1400  1200  1000</td>
</tr>
<tr>
<td>2400</td>
<td>-      100   100   100   100   100   100   100</td>
</tr>
<tr>
<td>2200</td>
<td>-      250   350   400   500   500   600   600</td>
</tr>
<tr>
<td>2000</td>
<td>-      -     350   500   600   700   900   1100</td>
</tr>
<tr>
<td>1800</td>
<td>-      -     -     600   900   900   1000  1100</td>
</tr>
<tr>
<td>1600</td>
<td>-      -     -     500   900   900   1000  1300</td>
</tr>
<tr>
<td>1400</td>
<td>-      -     -     -     100   800   900   1000 1300</td>
</tr>
<tr>
<td>1200</td>
<td>-      -     -     -     -     500   900   1000 1400</td>
</tr>
<tr>
<td>1000</td>
<td>-      -     -     -     -     300   900   1000 1400</td>
</tr>
<tr>
<td>800</td>
<td>-      -     -     -     -     -     600   900   1300</td>
</tr>
<tr>
<td>600</td>
<td>-      -     -     -     -     -     -     500   1200</td>
</tr>
<tr>
<td>400</td>
<td>-      -     -     -     -     -     -     300   1200</td>
</tr>
<tr>
<td>200</td>
<td>-      -     -     -     -     -     -     200   1100</td>
</tr>
</tbody>
</table>
Section 4 - Guards for different machine types

4.1 Exposed rotating cutting processes
Exposed rotating cutting machinery includes cut-off saws, milling machines, friction cutting and boring equipment. The hazard arises from the exposed blades, and risks include cutting flesh or limbs, or entanglement.

The most appropriate types of guards are fixed or moving guards.

Illustration 17 - Self-adjusting guard for a drop saw
A particular point to note is the self-actuating visor fitted to the fixed guard. If this visor is not affixed, the cutters teeth are exposed when the machine is at the top of its stroke. As the cutter is lowered the visor automatically rises.

4.2 Pulleys and drives
Pulleys and drives are used in a range of machinery. The main hazard is nip-points, and all need to be guarded so as to be out of reach for operators to prevent the risk of entanglement.

Fixed guards are preferred for pulleys and drives. In some cases, a hinged section may be appropriate to enable access during machine setting. Such control measures must be designed and installed so that a tool is required to remove and replace a guard.

Illustration 18 - Fixed guard for a pulley and drive constructed of wire mesh and angle section preventing access to transmission machinery
4.3 Rotating shafts and rollers
Fixed guards are preferred for rotating shafts and rollers. Guards must provide protection against loose clothing and long hair getting entwined with rotating shafts. Appropriate work processes may include the requirement that operators not wear loose clothing, and tie long hair back or wear head covering. Examples of rotating shafts include couplings, spindles, fan-shafts and ironing rollers.

Illustration 19 - Fixed guard on rotating shaft/coupling

4.4 Safety devices
Safety devices are designed to sense a person or part of the body and initiate the stopping of a dangerous motion performed by the machine before access can be gained to a dangerous area surrounding the machine. Safety devices also ensure that a person or part of the body cannot gain access to a dangerous area of the machine as a result of the design, placement or junction of machine controls. Some examples of how safety devices can be used are illustrated below.

Illustration 20 - An example of a photoelectric light curtain used as a trip guard. When any of the beams are blocked by intrusion towards the hazard area, the light curtain control circuit switches off the hazard power.

Illustration 21 - Two-handed controls
4.5 Combination of guarding and safety devices

A combination of guarding and safety devices can be used to ensure all hazards and risks associated with the machine have been addressed. Illustrated below is an example where a combination of guarding and safety devices has been used.

Illustration 22 - Pressure sensitive mat

Illustration 23 - Paper cutting guillotine featuring a combination of guarding and safety devices such as photoelectric guarding, fixed side guard and two-handed push button controls.

4.6 Safe work rules and practices

4.6.1 Isolation

With the exception of those circuits required for safety systems, all machinery should be fitted with a means of isolation from all energy sources. Such isolators should be clearly identified and be capable of being locked if reconnection could place people at risk.

An appropriate isolation method is a lock-out/tag-out system, in which one or more padlocks are fitted to the isolation switch, with keys being held by the operators or maintenance personnel. Their name and reason for the lock-out are written on the tags attached to the padlock. When the task is completed, the locks and tags are removed and power can be restored.

4.6.2 Emergency stop devices

Emergency stop devices must be located where an operator can easily reach them. Poorly located devices may encourage dangerous practices, such as reaching across moving parts, a failure to shut down machinery or plant when a problem occurs, or situations where the machine or plant can be started by one worker while another is in a dangerous location (e.g. cleaning a bin).
The number of emergency stop devices required needs to be considered. If the machine or plant is large, several devices may be necessary. When there are multiple devices, safe operating practices must be adopted so that machinery or plant is not restarted when it is undergoing maintenance or other temporary operations. A lock-out/tag-out system, as outlined above, is therefore an essential part of isolating an energy source to prevent accidental plant start-up.

**4.6.3 Inspection, cleaning, repair, maintenance and emergency procedures**

To safeguard operators and other staff, cleaning, repair, maintenance and emergency procedures must be in place and understood by workers. A regular inspection regime should be in place to identify any problems with plant and machinery and safeguards. Any additional hazards associated with these activities must be identified and assessed as part of the risk management process. Special precautions need to be taken where workers undertaking these tasks are obscured, or where there are multiple operating switches. Apply isolation procedures whenever maintenance or repair requires people to enter the danger area around machinery.

**4.6.4 Opening and removing guards**

Guards must only be able to be opened or removed with the aid of a tool and when the machine is not in operation.

**4.6.5 Weight**

Large machinery or plant may require extensive guarding, and these guards may need to be removed for maintenance access. While some sections may remain fixed, it is preferable that the guard be divided into easily removable sections. Sections should be designed to be removed and handled easily by one person. Appropriate placement of handles on movable sections will facilitate ease of removal, lifting and handling and thus reduce the risk of manual handling injuries.

**4.6.6 Interactions**

Guards that move out of the way for each operation (automatic guards) need special consideration. Watch for potential risks in the interactions between guard and machine, between guard and person and between guard and work-piece.

**4.6.7 Colour coding**

It is good practice for all safety guards to be painted the same colour. For example, use high visibility yellow (provided it is different to the general machinery colour) so that it can be clearly seen when a guard has been removed or when it is not in its proper place. It is also good practice to paint the surfaces behind the guard a different colour (e.g. blue or red), so that when the guard has been removed, the exposed colour is clearly visible. It is then easy to identify that the guard has been removed and workers are alerted to possible danger.
Section 5 – Safeguarding of power presses, conveyors and robotics

Due to their inherent risks, some machinery and plant requires specific guarding. Specific guards and practices are provided here for conveyors and for robotics and for the two categories of power presses—power stamping presses and brake presses. These machines present a number of hazards and risks requiring control.

5.1 Power stamping presses

Power stamping presses are machines used for stamping various materials by the closing action of two parts—one moving (punch) and one stationary (die). The product is formed when the punch and die are brought together by force generated by a motor and flywheel. There are two main drive systems—key clutch and hydraulic. Operation may be either by automatic feed or by manual operation, where each individual piece of material to be formed is placed into the die area by the operator. It is in this mode of operation that most power press injuries occur.

5.1.1 Hazards and risks

The main hazard of a power stamping press is where the punch and die come together to form the product. The impact would have a crushing, cutting or shearing motion which creates a risk of having a part of the body crushed or cut. Drive belts have in-running nip points which present a risk of entanglement and abrasion.

5.1.2 Control measures

Depending on the type of job to be carried out, there are various ways of guarding these presses. Options include:

- **Fixed guarding:**
  A fixed guard has no moving parts and offers protection only while the guard is in its correct position. Operator access to the hazardous area is prevented, however with the aid of a tool, slides can be adjusted to allow work to be fed through the guard into the stamping area.

- **Interlocked guarding:**
  An interlocking guard is a guard which has a movable part, which is interconnected with the power or control system of the machine so that until the guard is closed, the interlock prevents the machine from operating. With the key-clutch type of press fitted with interlocked guarding, it is also necessary to fit an anti-repeat device to prevent a power stroke in the event of a clutch failure.

- **Presence-sensing devices (photoelectronics):**
  Presence-sensing devices (photoelectronics) detect the presence of a person, or part of a person, in a defined area, and prevent the dangerous parts of machinery from moving while anyone is in that area. Presence-sensing devices are only suitable for hydraulic machines, and installation of these devices should comply with AS4024.1 Safeguarding of machinery – General principles.

- **Two-handed controls:**
  Two-handed controls are only suitable for hydraulic machines. This system requires both hands to operate the machine controls and should be designed in accordance with the following:
  - controls should be separated and protected to prevent spanning with one hand only
  - it should not be possible to set the dangerous parts in motion unless the controls are operated within half a second of each other
  - if one or both controls are released, movement of the dangerous parts should be stopped immediately
• the controls should be positioned at such a distance from the danger point that, on releasing the controls, it is not possible for the operator to reach the danger point before the motion of the dangerous parts has been stopped
• rear and side guarding of the machine is required.

- **Administrative controls:**
  Regular maintenance of ‘key-clutch’ presses is extremely important. Inspection and maintenance records should be kept to demonstrate that maintenance has been carried out. Regular systems audits and safety inspections should be carried out to ensure that standard practice matches stated procedures. Safety inspections should include the condition and operation of the following:
  • flywheel bearing and shaft
  • extractor cam and key
  • anti-repeat device
  • brakes
  • guards
  • safety devices
  • controls.

**Maintenance problem areas**

1. Clutch mechanism 6. Guard control
2. Brake 7. Linkage and attachments
3. Flywheel bearing 8. Toolsetter’s disconnection
5. Clutch interlock 10. Guard over foot pedal

*Illustration 24 - This is a power stamping press. Performing maintenance on power presses can bring maintenance people into contact with hazardous areas on the power press. The above illustration identifies common problem areas on a power press.*
Flywheel seizure: The flywheel journal bearings must be kept well-lubricated and clean. The majority of presses have ball or roller-bearings, but some imported machines do have rolling keys. The design of rolling key clutches is such that plain bronze bearings are a necessity. Any metallic fragment entering the bearing, or a simple lack of lubrication, could cause the bearing to seize on the journal of the crankshaft and an uninitiated stroke to occur.

5.2 Press brakes (mechanical and hydraulic)
A press brake is a machine generally limited to linear bending and forming of material (e.g. sheet metal and heavy gauge material).

5.2.1 Hazards and risks
The main hazard of a press brake is where the punch and die come together to form the product. The impact would have a crushing, cutting or shearing motion which creates a risk of having a part of the body crushed or cut. Drive belts have in-running nip points which present a risk of entanglement and abrasion. Hydraulic hoses may pose a risk if they leak or burst. Risks may include spills creating a slip hazard and hydraulic fluids coming into contact with workers.

5.2.2 Control measures
Depending on the type of job to be carried out, there are various ways of guarding these presses. Where press brakes are being used for specific repetitive jobs, fixed guards may be appropriate. However, for general use, where workers have to hold or stabilise the material, or need frequent access to closing dies, these machines would require presence-sensing devices to ensure safe operation. Presence-sensing devices may be light curtains or light beams. Automatic stops must also be guarded and back-gauging equipment is recommended.

Presence-sensing systems—light curtains
Light curtains consist of several pairs of light box units and a control box. Each light box pair has a transmitter and receiver. The transmitter generates a curtain of high intensity, micro-second infra-red light pulses, across the machine operator’s work area. This curtain of light is transmitted an appropriate distance from the hazardous area as determined in accordance with AS4024.1 Safeguarding of machinery – General principles, or as determined by a risk assessment. Any intrusion into this light curtain produces a signal for the control box to stop the machine. In order to assist the operator, these light curtain systems have a variety of operating modes which may be set according to the type of work being done. For example:

- continuous stroking mode—when the control pedal is depressed, the machine will move from the top of the stroke and continue to stroke while the pedal is depressed. If the light curtain is penetrated while the machine is down-stroking, the machine will stop
- top-to-top mode—the machine operates as in the continuous mode, except that, regardless of whether the operator releases the foot pedal, the machine will stop at the top after one cycle
- bottom stop mode—the machine starts from the top of the stroke when the pedal is depressed, and stops leaving a daylight gap between the top and bottom beam, in accordance with AS4024.1 Safeguarding of machinery – General principles or as determined by a risk assessment. At this point the light curtain is muted or bypassed. Depressing the pedal again moves the machine to the bottom of the stroke and returns it to the top where it stops and at this point the light curtain is reactivated
• bottom stop-to-bottom stop mode—similar to the bottom stop mode except the machine does not stop at the top of the stroke. It stops at the 6 mm gap mute position, or when the light curtain is obstructed on the down stroke.

• pulsing mode—the light curtain is muted or bypassed and the machine can be moved down in 10 mm increments with each depression of the pedal. This mode allows the operator to stand inside the curtain for close work.

• link mode—is used for mechanical presses and is similar to the bottom-stop mode, except the initial down stroke is controlled by an electric foot-switch and at the 6 mm mute point, the pedal controlling the mechanical friction clutch is operated to finalise the stroke of the machine.

Presence-sensing systems—light beams

This type of guarding system consists of three infra-red light beams mounted on the press-brake blade. The front beam protects the operator, while allowing work to be performed close to the blade. The centre beam sets the mute bypass point. The rear beam protects people at the rear of the machine, eliminating the need for mechanical guarding.

On occasions it may not be possible to perform work with the guarding system in place. Specific guidance for the systems to be implemented when guarding is removed or switched off (muted), is detailed in Clause 6.4.3 of AS1219 – 1994 Power presses – Safety requirements. However, if the work to be performed requires guarding to be removed on a regular basis, the machine may not be suitable for the application. Measures should therefore be taken to use another machine or to modify the existing machine so that the guard does not have to be removed.

In the event of the need to invoke clause 6.4.3, and regardless of whether option (a), (b) or (c) in that clause is selected, there is still a requirement to install suitable guarding to protect operators from hazards at the rear and sides of the machine. In the event that option (c) of clause 6.4.3 is selected, all seven requirements listed in (c) must be met.

Additionally, a safe system of work should be documented and the operation supervised by a competent person.

AS1219 - 1994 Power presses – Safety requirements provides more information in relation to guarding devices, their design, manufacture and the safeguarding of power stamping presses and brake presses. This standard should be consulted for additional information.

5.3 Conveyors (bulk handling)

Conveyors are a means of transporting materials from one point to another. Different types include belt conveyors, screw conveyors and bucket conveyors.

5.3.1 Hazards and risks

The main hazards of a conveyor are the numerous in-running nip points which present a risk of entanglement, crushing and abrasion. The drive system itself may also pose risks of entanglement or abrasion.

5.3.2 Control measures

Fixed guards that enclose in-running nip points and the drive mechanism are often the most effective ways of safeguarding conveyors. The following examples show the numerous danger points on a standard conveyor and ways to guard the head and tail sections of the conveyor. All guards should be designed for easy removal and should require the use of a tool for removal and replacement.
It is important to note that physical guarding is not the only guarding option for conveyor systems. Other safeguards include:

- **Electrical isolation (lock-out/tag-out)**
  Although safeguards are provided which prevent access during most phases of machinery or plant life, they may not be effective at all times because of the need to gain access to hazardous areas during maintenance, set-up, etc. Isolation procedures should be developed by the employer which are appropriate for the particular machine. These procedures could include various types of locks, keys and danger tags. A typical lock-out/tag-out system for conveyor drives would be to apply a lock to the isolation switch, as well as a danger tag with the maintenance person's name on it.

- **Start and stop controls**
  Conveyors should be provided with appropriate drive power isolation, whether electrical, hydraulic, pneumatic or mechanical. Isolation should be secured by means of a lock-out/tag-out system. At each conveyor start location, a clearly labelled ‘stop’ control should be provided. Where the start control is in a position from which the whole of the conveyor operation cannot be viewed, a visible or audible signal should be provided to warn people in the vicinity.

- **Emergency stop controls**
  A lanyard type pull-wire emergency stop is the most suitable emergency stop for exposed belt type conveyors where workers are required to access the belt area when the conveyor is in use (e.g. placing and removing parcels at a transport depot). The lanyard type allows access to the emergency stopping facility from all of the points where a person may be working during the conveyor's use. Emergency stop controls must be manually reset before the conveyor can be restarted from its normal start control.
• **Access provisions**
  Machinery design should allow all routine adjustment, lubrication and maintenance to be carried out without removing guards or extensive dismantling of components. Lubrication and routine maintenance facilities should be incorporated outside the danger area wherever practical. However, when people require access to the danger area, for example for machine setting, safe isolation procedures should be used.

• **Lighting**
  Provide local lighting on the machine for lighting the work area when the machine or guards render normal lighting inadequate for safe operation. Local lighting should also be provided in regular maintenance areas that are poorly lit, for example inside certain electrical compartments where electrical isolation is necessary for access.

---

**AS1755 – 2000 Conveyors - Safety requirements** provides more information in relation to minimum safety requirements for the design, installation and guarding of conveyors and conveyor systems. This standard should be consulted for additional information.

**AS1680.1 – 1990 Interior lighting – General principles and recommendations** provides more information in relation to the general principles and recommendations for lighting. This standard should be consulted for additional information.

---

### 5.4 Robotics

A common misconception is that robotic operations are ‘safe’ because there is little or no worker interaction, however most health and safety issues with respect to robotics are in relation to installation, repair and maintenance. While operation may be safe, a risk assessment must be undertaken to ensure workers’ safety during all phases of the machinery life and use. Robots have often been used to remove the more traditional hazards associated with machinery and also to perform some high-risk operations, for example in the biotechnology field.

The risk management process should be followed, with reference to manufacturer’s instructions, during installation (commissioning), testing and start-up, repair and maintenance.

#### 5.4.1 Hazards and risks

Robots have inherent dangers including unpredictable action patterns, high speed operations, ability to move in free space, and ability to be reprogrammed or reconfigured to change their use and application. Some of the hazards associated with industrial robot operation include:

- **Impact**
  Robots may move in a direction not anticipated or planned, at high speed in linear or rotary directions. The robot may also eject work-pieces, off-cuts or molten metal. Workers are at risk from being hit by the robot or parts of the work.

- **Trapping points**
  Trapping points may be created by movements of the robot or associated equipment such as work carriages, pallets or transfer mechanisms. On the robot itself, trapping points may be identified on the arm of the robot, between the arm and the column, and between the arm and fixed objects. Workers may be crushed or become entangled by the robot or the process.

- **Control errors**
  Control errors result from intrinsic faults within the control system of the robot (e.g. software, electrical interference, program corruption and sub-controls associated with the electrics, hydraulics and pneumatics).
• **Human error**
  Human error could occur during programming, teaching, and maintenance and repair, or in work handling close to the robot or at load/unload stations.

• **Failure or malfunction**
  Failure or malfunction of electrics, hydraulics and pneumatics.

• **Biological or chemical hazards**
  Hazards may occur where robots are being used to reduce the risks from hazardous or infectious processes. Workers may risk inhaling or absorbing hazardous substances. In this case, particular attention must be paid to the process itself and to any breakdown or emergency procedures that may result from spillage, contamination or breach of the system.

• **Environmental hazards**
  Hazards include dust vapour, fumes, lasers, radiations, and flammable and explosive atmospheres. Workers may risk inhaling or absorbing hazardous substances, burns and other injuries.

### 5.4.2 Control measures

Hazards associated with moving parts, other than at point of operation, should be eliminated by design, or else protection must be provided against the hazards. Industrial robotic installations may be safeguarded by one or more guarding and presence sensing devices. Enclosure is a frequent control measure for robotic systems.

The highly technical and programmable nature of robots means that additional safeguards should be considered in addition to the guarding of dangerous moving parts. Measures should be taken to prevent unauthorised access to controls and to protect the robot system from unintended operation. Attention must also be paid to controlling hazards in adjacent areas—for example, loading or unloading stations and associated equipment. In particular, removal of associated equipment such as conveyors, transfer systems and trolleys, must not allow access to restricted areas. If so, these points must be guarded.

**Control systems**

Actuating (start) and control systems for robotics are usually of the programmable electronic type. These must be protected against unauthorised access, for example by location in a lockable control cabinet or room. Controls should be constructed or located to prevent unintentional operation. This can be achieved by shrouding, guarding, gating, appropriately positioned or otherwise designed to prevent accidental operation.

**Master switches**

Master switches must be provided to isolate all motive power from the robot and may be the same device as an emergency stop device. This master switch should be capable of being locked in the isolating position and require manual resetting.

**Fixed or distance guards**

Guards may be used where the guard will not interfere with the mechanism of the robot. It must be necessary to use tools to remove the guards in order to gain access to the restricted danger area. Guards or fences must be located to prevent people from reaching in to a restricted area. Any openings provided for feeding material into the process should be designed to prevent access by any part of a person.
Interlocked guards
Interlocked guards initiate an emergency stop when opened. While such a guard must prevent initiation of automatic operation, it may maintain power for other functions. Return to automatic operation would therefore require both the closing of the interlocked guard and the activating of a start procedure.

Presence-sensing devices
Presence-sensing devices must be designed and positioned to detect entry into a restricted space or danger area and to cause the automatic operation of the robot to cease when entry is detected. The failure of this device would also cause the robot to cease operation.

- Photoelectric systems consist of a combination of a photoelectric device (e.g. a light curtain or beam), robot control system, drive and brake units and, where appropriate, an overall performance monitor. Interruption of the light curtain will cause the operation of the robot to cease, therefore it should not be possible to stand or place a body part between the light curtain and the hazardous part of the process. Photoelectric devices can be set to control the size of any penetration (e.g. a hand but not the arm or an arm but not the body).
- Pressure-sensitive mats operate by means of a number of suitably spaced electrical or fluid switches or valves contained within a mat covering the approaches to a restricted space. Pressure on the mat will cause the automatic operation of the machine to cease. Such a guard must be designed so that it is not possible to circumvent or overstep a pressure-sensitive mat into a restricted area.

Training
Inadequate training may increase the risks at most stages of robot operation. Appropriate training is considered essential when controlling the risks associated with industrial robot machines.

Safe work systems
Safe work systems are a recommended control measure to minimise some of the risks associated with robotics. A documented safe work system involves recording procedures for entry (including who is permitted to perform identified tasks), access, maintenance and repair.

Inspection and maintenance activities may provide a different set of hazards to performance or monitoring of work, and must also be assessed in terms of hazards and risks.
Illustration 27 - Typical manufacturing system using a robot as the material handling system where perimeter marking/barrier, fixed barriers with interlocked gates, presence-sensing devices, warning devices and additional system emergency stop devices are used.

AS2939 – 1987 *Industrial robot systems – Safe design and usage* provides more information in relation to the requirements of the design, construction, safe guarding and installation of industrial robots. This standard should be consulted for additional information.
Section 6 - Other machinery safety issues

It should be noted that the following sub-sections are not an exhaustive list of ‘other machinery safety issues’. AS4024.1 Safeguarding of machinery – General principles provides more information in relation to a number of other issues not mentioned in this section. This standard should be consulted for additional information.

6.1 Work organisation

Management has a key role in establishing and maintaining systems and processes that monitor and evaluate potential hazards. Following the risk management process will assist employers and people conducting a business or undertaking to ensure the safety of their workers and those conducting work activities. Commitment is required from all workers, from senior management right down to the shop floor. Production rates and deadlines should be planned so that they can be attained without compromising safe work practices.

For machine guarding to work effectively, the movement of materials on-site and the job procedures appropriate to the machinery must be thoroughly understood. Safe machinery operating procedures or instructions for machinery or plant should be developed, and workers appropriately trained to ensure safe work practices are maintained.

New risks should not be introduced into the workplace because of the introduction of new technology, new machinery or plant, or modifications to existing machinery of plant. At these times risk assessments must be performed, ideally in consultation with workers.

6.1.1 Layout

Machine guarding will be more effective if it is used in conjunction with proper attention to layout. Machines which are poorly located or too close together may not be safe, even if guarded. There are a number of basic points to consider in relation to layout:

- avoid congestions or worker movements near machinery that are likely to increase the risk of injury
- the layout should eliminate or minimise hazardous movements in relation to operation, cleaning or maintenance (e.g. blockage)
- where waste materials are generated, the layout should include space for storage or accumulation until cleared. They should not be allowed to clutter walkways or work areas
- the layout should consider ‘traffic flow’ by identifying the movements of trucks, materials and people. By defining simple, well marked and well understood traffic areas and directions, the likelihood of people coming near dangerous machinery, and therefore the risk of injury, can be reduced
- proximity of moving parts in relation to other machinery or plant and fixtures in building.

6.1.2 Housekeeping

Untidiness can cause slips, trips and falls. Injuries can be avoided by:

- keeping work areas, walkways and other access paths clear and clean. They should be clearly marked
- preventing spills which may cause slips. Design machinery and work processes to minimise lubrication oil loss or spillage. Clean up spills as soon as possible after they occur, and avoid any oily residues on the floor. Provide a rough anti-slip floor where this is not practical.
6.1.3 Work practices
All processes relating to machinery or plant should be documented. In particular, directions about operation, cleaning, maintenance, and problems that may be encountered should be clearly stated in a way that ensures the safety of the worker. Systems should be in place that prevent workers from bypassing guarding mechanisms.

Supervision is essential to ensure that a system of safeguards is used correctly.

Changes to machinery (new plant or modifications) may require changes to existing work procedures and processes to ensure the guarding does not create new problems. Documentation and work manuals should be updated at the same time.

6.2 Work environment
There are a number of general types of workplace hazards associated with machinery. These include noise, energy (electricity or hydraulics), manual handling (lifting, repetitive movements), substances (solvents, cleaners, chemicals), the work environment (such as confined spaces, lighting, ventilation and access), and the actual plant and equipment in use. The risks associated with these hazards must also be assessed and controlled.

6.2.1 Dust
A dusty workplace can be dangerous. Dust and other airborne contaminants can have direct and severe long-term effects on workers’ health, which could include respiratory problems, skin disorders and even cancer. Dust can also cause injury by clogging machinery, inducing sudden breakdowns and obscuring moving parts and other hazards. The discomfort caused by dust on the skin, clothing and protective equipment can also compromise safety.

Some measures for reducing the risk of injury or illness resulting from dust include:

• installing a dust collection system that removes dust from the environment and can save clean up time
• use of a simple lid, cover or shield on saws, augers and other machinery to reduce dust levels
• housekeeping procedures such as frequent cleaning or damping down.

Such guarding may also reduce the level of noise and improve worker comfort and productivity.

6.2.2 Lighting
Ample lighting is needed for the operation of machinery so that machine movements, controls and displays can easily be seen. Poor lighting can affect people both physically and psychologically, causing eye-strain and tiredness.

The following issues should be considered with respect to lighting and machinery:

• direction and intensity of lighting
• contrast between background and work area, applicable to both work environment and control panels
• colour of the light source
• reflection, glare and shadows
• the stroboscopic effect of fluorescent lighting on moving machinery which makes moving parts of machinery look as if they are stopped
• the stroboscope effect of rotating beacons in mobile plant in the internal environment.
6.2.3 Noise
Noise, particularly excessive noise, interferes with concentration and can cause operator stress (itself a source of errors), which can lead to mistakes. Noise may also prevent a verbal warning being communicated. The Workplace Health and Safety Regulation 1997 includes provisions with respect to noise levels in the workplace. Noise levels should be measured to ensure compliance with recommended standards.

Control measures for noisy plant and machinery include:

- providing sound-proof enclosures, which may be combined with machine safeguarding
- limiting exposure periods
- providing appropriate, properly fitted hearing protection for operators and other affected workers.
  It should be noted that incorrectly selected hearing protection can artificially distract the worker, causing them to loose concentration.

Guarding can be made as part of the noise solution. In many instances, carefully designed guarding of moving parts can aid noise reduction and help remove the stress associated with prolonged noise exposure.

6.2.4 Hot and cold environments
A comfortable temperature is safer to work in. Accidents are more likely to happen if people need to work where the temperature is outside a comfortable work range. Extreme heat or extreme cold may also effect machinery operation in various ways.

Some of the control measures to consider when work is conducted in hot and cold environments include:

- providing appropriate personal protective equipment, selected with consideration of the tasks to be performed. In cold environments, bulky insulated clothing may restrict movement, reduce manual dexterity and increase entanglement risks
- limiting exposure periods
- providing sufficient drinking water and air flow for outdoor workers or hot workplaces
- following manufacturers instructions or seeking their advice about machine operation in extreme temperatures.

6.2.5 Ventilation
Some processes and machines generate heat and fumes during operation. People working nearby must be adequately protected from inhaling dangerous fumes and from contacting hot parts.

To control the risks, guarding should:

- allow adequate air flow, for example, through a mesh guard so that equipment does not overheat
- be insulated or distance guarded to reduce the risk of burns
- include ducting if necessary to vent hot air or fumes away from workers
- include filters, if required, to remove dangerous particulates from the air.
6.2.6 Confined spaces

Confined spaces can be created in or around machines when guarding is removed or deactivated to allow for cleaning, maintenance or access to the area surrounding the machine.

Confined spaces present a risk to health and safety and can potentially contain many hazards, some of which are not visibly detectable.

The Workplace Health and Safety Regulation 1997, part 15 (Confined spaces), section 145, deals with using confined spaces and identifies relevant sections of *AS/NZS 2865 – 2001 Safe working in a confined space* that must be complied with.

*AS/NZS 2865 – 2001 Safe working in a confined space* sets out the particular requirements and procedures to ensure the health and safety of all people required to enter or work in a confined space.

*AS4024.1 Safeguarding of machinery – General principles* also provides more information in relation to the environmental factors discussed above. Both the regulation and these standards should be consulted for additional information.

6.2.7 Electrical safety

Dangerous situations can arise as a result of the failure of electrical safety control systems. System failure can be caused by several factors such as environmental conditions, suitability for the specific safety application and insufficient system monitoring and maintenance.

*The Electrical Safety Act 2002* and the Electrical Safety Regulation 2002 provide a legislative framework to prevent people from being killed or injured and property from being destroyed or damaged from electricity. The Act and the regulation should be consulted for additional information.

*AS1543 – 1985* is currently being reviewed and will become *AS6024.1 – 200X Safety of machinery – Electrical equipment of machines Part 1: General requirements*. This standard will provide requirements and recommendations for the electrical equipment of industrial machines with regard to safety of people and property, consistency of control response and ease of maintenance. The draft is not to be regarded as an Australian Standard and should only be consulted for additional information when Standards Australia has released it as such.

*AS4024.1 Safeguarding of machinery – General principles* also provides more information in relation to the specific requirements regarding overall system design in relation to electrical safety control systems. This standard should be consulted for additional information.

6.3 Minimising human error

Human or worker error is not always the result of carelessness or negligence, but follows from normal human characteristics. The desire for extra speed, less work and making tasks easier, are some of the leading reasons why guards are bypassed or removed. Also, people naturally become bored and distracted with repetitious work, which may cause loss of concentration. Designers, manufacturers and employers should be aware of these factors in designing machines and developing safe work practices.

Machine guarding solutions must take human issues into account, which is another reason to get those using the machine involved in developing solutions. In the long term, a carefully considered solution will almost always prove to be less costly and more efficient.
Factors contributing to human error include, but are not limited to:

- vigilance
- information handling capacity
- ergonomics
- psychological or cultural environment
- habit
- fatigue
- level of training.

**Vigilance**

Refers to a worker’s ability to be alert to danger or problems during operation and is a higher requirement than ‘staying awake’. It implies active interaction with and awareness of the work environment. Having regular rest breaks has the potential to improve work performance and assist workers with remaining alert to any danger or problems that may arise during operation. Workers can naturally become bored and distracted with repetitive work, which may cause loss of concentration and an overall decrease in alertness and awareness to danger or problems. Job rotation provides workers with variety so that they do not become bored with repetitive tasks, and therefore increases the likelihood of workers maintaining a high level of alertness and awareness.

**Information handling capacity**

Vital information can be overlooked if it is presented too quickly, or if it comes together with other information (information overload). If a person has to monitor more than one ‘channel’ of information at any one time, they should have a clear order of priority.

**Ergonomics**

Ergonomics is the study of human and machine interaction. Poor operator comfort (e.g. no attention to the location of stools, buttons) can contribute to losses of concentration and result in errors.

* HB59 – 1994 Ergonomics – The human factor – A practical approach to work systems design *

produced by Standards Australia provides more information in relation to designing the workplace and the environment in such a way that the most efficient use is made of human capabilities, without succeeding human capacities. The handbook should be consulted for additional information.

**Fatigue**

The safe use of machinery is more than attending to guarding. Long hours of work, shiftwork or long periods without adequate breaks can lead to loss of concentration, slow reflexes and increased risk of error. Excessive heat, poor ventilation, lighting and shiftwork also contribute to fatigue, losses of concentration and error, all of which should be taken into account when looking at machine guarding.

* The Workplace Health and Safety Queensland Fatigue Management Guide *

provides more information in relation to fatigue and strategies on how to best manage it in the workplace.
Psychological or cultural environment

A corporate culture of safety creates positive beliefs and values regarding the management of risks in the workplace, and consequently reduces work-related injury and illness.

Habit

People can continue a habitual activity despite indications of danger. Clear labelling of controls and clear, simple warning notices can help. People also get used to a particular arrangement of controls. Use standardised controls as much as possible, and ensure that location of the controls is appropriate. The action used to operate a control should also be compatible with the effect on the machinery, for example, switching a control towards the left moves material into the machine in the same direction. This element deserves particular attention when considering the purchase of replacement machines, especially if the new controls are reversed or located differently.

Training

It should not be assumed that people already know or can informally learn about machinery or plant safety. Training must be provided to workers on any required personal protective equipment, newly introduced equipment or modifications to existing machinery. All people who supervise, manage or operate machinery or plant, should receive appropriate training and instruction for health and safety. Training should include safe operating procedures and any precautions that may be needed to control the hazards of the machines they operate.

6.4 Registrable plant

Owners of plant listed in schedule 2 of the Workplace Health and Safety Act 1995 and schedule 3 of the Workplace Health and Safety Regulation 1997 must not use the plant, or permit the plant to be used at a workplace unless the plant is registered.

Owners who want to register plant must apply to Workplace Health and Safety Queensland on the prescribed form. A fee is payable and a certificate of registration is issued, with registration being renewed each year. Notification of change of ownership of registered plant must be given.

Registrable plant listed in schedule 3 of the Regulation includes airconditioning units, specified amusement devices, building maintenance units, cooling towers, escalators, mobile elevating cranes, tower cranes, truck-mounted concrete placing booms and specified boilers, lifts and pressure vessels

6.5 Registrable plant design

The design of plant listed in schedule 4 of the Regulation must be registered with Workplace Health and Safety Queensland.

An application for registration of details of plant design will be registered with Workplace Health and Safety Queensland if it is made in the prescribed form and is accompanied by the prescribed fee and representational drawings of the plant design. An employer must not use or permit the use of, any plant listed in schedule 4 unless the employer possesses a copy of the written notice of the registration of the plant design from Workplace Health and Safety Queensland.

Registrable plant design applies to vehicle hoists, elevating work platforms, specified cranes and hoists, lifts, escalators, domestic lifts, people movers, amusement devices (as classified), and certain boilers and pressure vessels. Applicable design standards are listed.
Section 7 - Further information

7.1 Standards Australia
Standards Australia develops and maintains more than 7000 Australian Standards and related publications. These documents are used in countless daily business transactions and facilitate trade between individuals, corporations and nations. To obtain further assistance in relation to Australian Standards, Standards Australia can be contacted through their Customer Service Centre:

National Customer Service Centre
Telephone: 1300 65 46 46
Facsimile: 1300 65 49 49
Overseas Telephone calls (02) 8206 6010
Overseas Faxes (02) 8206 6020
Email: sales@sai-global.com
Web shop: www.standards.com.au

7.2 Consulting engineers
There are a number of consultants who can offer advice on safeguarding machinery or plant. If it is decided to use a consultant, shop around and make sure the consultant is fully conversant with Queensland legislative requirements, and that they take an approach to the problem that is consistent with the principles identified in this guide. Ask them for evidence of previous work in the area and check out the work for yourself, talking if possible with other employers. Small employers can pool with other employers in the area in order to spread the costs. This type of cooperation makes sense as it saves time and money.

7.3 Workers
Remember the workforce when it comes to seeking solutions. They work with the machinery and plant every day and they can often not only help better identify a problem, but also help with devising the most efficient and cost-effective solutions. Workplace safety committees or health and safety representatives should be involved, but even if these do not exist at the particular workplace, workers should still be involved. In the end, they have a direct interest in safeguarding their own health.

Even if experts or consultants are brought in, there will be a need to ensure that workers are informed and involved. A guard may look fine from an engineering viewpoint, but it also needs to take account of worker comfort and ease of operation. Workers are in the best position to judge the effectiveness of guards on the machines they are using.

7.4 Industry associations and similar workplaces
Industry associations, unions etc. can be used to obtain additional information. Their existing networks and contacts can be useful in identifying specific workplaces that perform similar types of work and therefore may be experiencing similar types of issues in relation to safeguarding machinery or plant.

7.5 Workplace Health and Safety Queensland
When considering machine guarding needs, or if unsure about how to handle a problem, Workplace Health and Safety Queensland should be contacted on 1300 369 915. Issues and options can be discussed with an inspector or adviser.
# Appendix 1 – Machinery and plant hazard list

<table>
<thead>
<tr>
<th>#</th>
<th>Hazard</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Mechanical hazards</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generated by machine parts or work-pieces, caused, for example, by:</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>shape</td>
<td></td>
</tr>
<tr>
<td>1.1.2</td>
<td>relative location</td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>mass and stability (potential energy of elements which may move under the effect of gravity)</td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>mass and velocity (kinetic energy of elements in controlled or uncontrolled motion)</td>
<td></td>
</tr>
<tr>
<td>1.1.5</td>
<td>inadequacy of mechanical strength</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Accumulation of energy inside the machinery caused, for example, by:</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>elastic elements (springs)</td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>liquids and gases under pressure</td>
<td></td>
</tr>
<tr>
<td>1.2.3</td>
<td>the effect of vacuum</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Elementary forms of mechanical hazards</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>crushing hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.2</td>
<td>shearing hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>cutting or severing hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.4</td>
<td>entanglement hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.5</td>
<td>drawing-in or trapping hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.6</td>
<td>impact hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.7</td>
<td>stabbing or puncture hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.8</td>
<td>friction or abrasion hazard</td>
<td></td>
</tr>
<tr>
<td>1.3.9</td>
<td>high pressure fluid injection or ejection hazard</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><strong>Electrical hazards, due to:</strong></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>contact of people with live parts (direct contact)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>contact of people with parts which have become live under faulty conditions (indirect contact)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>approach to live parts under high voltage</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>electrostatic phenomena</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>thermal radiation or other phenomena such as the projection of molten particles and chemical effects from short circuits, overloads, etc.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><strong>Thermal hazards, resulting in:</strong></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>burns and scalds by a possible contact of people with objects or materials with an extreme temperature, by flames or explosions and also by the radiation of heat sources</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>health damaging effects by hot or cold work environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hazards generated by noise, resulting in:</strong></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>hearing loss (deafness), other physiological disorders (e.g. loss of balance, loss of awareness)</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>interference with speech communication, acoustic signals, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hazards generated by vibration</strong></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>use of hand-held machines resulting in a variety of neurological and vascular disorders</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>whole body vibration, particularly when combined with poor postures</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hazards generated by radiation</strong></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>low frequency, radio frequency radiation, micro waves</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Infra-red, visible and ultraviolet light</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>X and gamma rays</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>alpha, beta rays, electron or ion beams, neutrons</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>lasers</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hazards generated by materials and substances processed, used by the machinery and by its constituent materials</strong></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>hazards from contact with or inhalation of harmful fluids, gases, mists, fumes and dusts</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>fire or explosion hazard</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>biological or micro-biological (viral or bacterial) hazards</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hazards generated by neglecting ergonomic principles in machinery design as, e.g. hazards from:</strong></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>unhealthy postures or excessive effort</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>inadequate consideration of hand-arm or foot-leg anatomy</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>neglected use of personal protection equipment</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>inadequate local lighting</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>mental overload and under-load, stress</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>human error, human behaviour</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>inadequate design, location or identification of manual controls</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>inadequate design or location of visual display units (VDU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Combination of hazards</strong></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Unexpected start-up, unexpected over-run/over-speed (or similar malfunction) from:</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>failure/disorder of the control system</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>restoration of energy supply after an interruption</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>external influences on electrical equipment</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>other external influences (gravity, wind, etc.)</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>errors in the software</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>errors made by the operator (due to mismatch of machinery with human characteristics and abilities, see 8.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Impossibility of stopping the machine in the best possible conditions</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Variations in the rotational speed of tools</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Failure of the power supply</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Failure of the control circuit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Errors of fitting</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Break-up during operation</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Falling or ejected objects or fluids</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Loss of stability / overturning of machinery</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Slip, trip and fall of people (related to machinery)</td>
<td></td>
</tr>
</tbody>
</table>

### Additional hazards, hazardous situations and hazardous events due to mobility

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Mechanical hazards</td>
</tr>
<tr>
<td>21</td>
<td>Linked to the working position (including driving station) on the machine</td>
</tr>
<tr>
<td>22</td>
<td>Due to the control system</td>
</tr>
<tr>
<td>23</td>
<td>From handling the machine (lack of stability)</td>
</tr>
<tr>
<td>24</td>
<td>Due to the power source and to the transmission of power</td>
</tr>
<tr>
<td>25</td>
<td>Lack or inadequacy of visual or acoustic warning means</td>
</tr>
<tr>
<td>26</td>
<td>Insufficient instructions for the driver/operator</td>
</tr>
</tbody>
</table>

### Additional hazards, hazardous situations and hazardous events due to lifting

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Mechanical hazards and hazardous events</td>
</tr>
<tr>
<td>28</td>
<td>Electrical hazard</td>
</tr>
<tr>
<td>28.1</td>
<td>from lightning</td>
</tr>
<tr>
<td>29</td>
<td>Hazards generated by neglecting ergonomic principles</td>
</tr>
</tbody>
</table>

### Additional Hazards, hazardous situations and hazardous events due to underground work

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Mechanical hazards and hazardous events:</td>
</tr>
<tr>
<td>31</td>
<td>Restricted movement of people</td>
</tr>
<tr>
<td>32</td>
<td>Fire and explosion</td>
</tr>
<tr>
<td>33</td>
<td>Emission of dust, gases etc.</td>
</tr>
</tbody>
</table>

### Additional hazards, hazardous situations and hazardous events due to the lifting or moving of people

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Mechanical hazards and hazardous events</td>
</tr>
<tr>
<td>35</td>
<td>Falling of person from carrier</td>
</tr>
<tr>
<td>36</td>
<td>Falling or overturning of person carrier</td>
</tr>
<tr>
<td>37</td>
<td>Human error, human behaviour</td>
</tr>
</tbody>
</table>
Appendix 2 - Dictionary of defined terms

**Abrasion areas**
Abrasion areas involve relatively smooth parts operating at high speed, e.g. the rim of a centrifuge basket at the edge of the casing opening. Other examples of abrasion areas include the periphery of an abrasive wheel, belt sanding machine, material running onto a reel or shaft, a conveyor belt and its drums or pulleys, and fast-moving ropes or belts.

**Consequence**
The outcome of an event or situation expressed qualitatively or quantitatively, being a loss, injury, disadvantage or gain.

**Cutting areas**
Cutting areas may involve rotating, reciprocating, or transverse motion. The danger of cutting action exists at the point of operation where finger, arm and body injuries can occur and where flying chips or scrap material can strike the head, particularly in the area of the eyes or face. Such hazards are present at the point of operation in cutting wood, metal, or other materials. Examples of mechanisms involving cutting hazards include all kinds of cutting tools, band and circular saws, boring or drilling machines, planing and tenoning machines, milling machines, water jet cutting, high energy laser or edges of moving sheet material. The cutting effect may be aggravated by the body being unable to move away from the cutter.

**Danger**
a state or condition in which personal injury is reasonably foreseeable.

**Entanglement areas**
Entanglement areas occurs through bodily contact through:
- contact with a single rotating surface, e.g. couplings, spindles, chucks, lead screws, mandrels, bars, or rotating work-pieces
- catching on projections or in gaps, e.g. fan blades, spoked pulleys, chain wheels, gear wheels and flywheels, mixer and beater arms, spiked cylinders, belt fasteners, projecting keys, set screws, cotter pins on shafts or slat conveyors
- by catching between two parts such as between counter-rotating parts (e.g. gear wheels, rolling mills), rotating and tangentially moving parts (e.g. a chain and chain wheel, a power transmission belt and its pulley) or rotating and fixed parts (e.g. revolving mixer and mincing mechanisms in casings having unprotected openings)
- catching in materials in motion, e.g. centrifuges, tumble driers or dough mixers.

**Fixed guards**
Permanent stationary guard that prevents access to the dangerous parts of machinery by enclosure or by providing a rigid barrier. May also totally enclose a machine. Fixed guards offer protection only when properly fixed in position, and should not incorporate any means of retention that creates the impression of the guard being securely fixed, when they are not so fixed. Fixed guards must be designed to require a tool for removal and replacement.
### Flying particles
The body may be penetrated by flying objects, ejection of parts of machinery (e.g. flying shuttle of a loom) or ejection of material (e.g. molten metal ejection from a die-casting machine, sparks generated in a welding process). Injection of fluids through the skin can cause tissue damage similar to crushing and can be considered in this category. Examples are compressed air jets, diesel fuel injectors, paint sprayers and high pressure hydraulic systems.

### Guard
A physical barrier that prevents or reduces access to a danger point or area.

### Hazard
Something with the potential to cause harm.

### Impact and crushing areas
Impact and crushing areas occur when one part of machinery moves against another with a part of the body in between e.g the ram of a forging hammer, counterweights or the tools of power presses. The traversing motion of a machinery part eg the table of a machine tool and a fixed structure not being part of the machinery may also create this type of hazard, as may a scissor hoist or table.

### In-running nip point
In-running nip points occur on the rotating parts of machinery. There are three types:
- parts rotating in opposite directions and parallel to each other, typically where material may be fed into a rolling mill, or where there are intermeshing gears
- between rotating and tangentially moving parts, for example chain and sprocket, rack and pinion
- between rotating and fixed parts which create a shearing, crushing or abrading action, as in spoked handwheels, flywheels and screw conveyors.

### Interlocking guard
Physical barrier which is interconnected with the power or control system of the machine. The interlock prevents the machinery from operating unless the guard is closed. Interconnections are usually either mechanical, electrical, hydraulic or pneumatic, and provide an effective safeguard where access to the point of operation is required between each cycle of the machine or where regular access is needed.

### Lock-out/tag-out
Procedure which can include various types of locks, keys and danger tags eg. applying a lock to the isolation switch, as well as a danger tag with the maintenance person's name on it.

### Presence-sensing guard
There are two types:
- laser guards—photoelectric safety systems operate on the principle of the detection of an obstruction in the path taken by a beam or beams of light. The intangible barrier operated by this system may consist of a single beam, a number of beams of light, a curtain of light or any combination of these as necessary to provide the required safeguard. If the light field is broken, the machine stops and will not cycle.
This device must be used only on machines which can be stopped before the worker can reach the danger area

- light beams—used in laser guarding of machinery. May be a scanning beam or beams, or a number of fixed beams. The light may be visible or invisible, e.g. infra-red, and may be continuous or modulated.

**Risk**
The likelihood that death, injury or illness might result because of the hazard.

**Risk assessment**
The process used to determine risk management priorities by evaluating and comparing the level of risk against predetermined standards, target risk levels or other criteria.

**Risk priority**
The level of importance placed on a risk where the higher the risk score the higher the priority of controlling the risk.

**Safeguarding**
A means of preventing people from coming in contact with any hazardous parts of a machine.

**Safety device**
A device, including presence-sensing devices, other than a guard that eliminates or reduces danger.

**Shear points**
Shearing action involves applying power to a slide or knife in order to trim or shear metal or other materials. Shear points occur where stock is actually inserted, held, and withdrawn. Parts of the body may be sheared in the following ways:

- between two machine parts, e.g. the table of a metal planing machine and its bed, the blade of a guillotine, nip points between connecting rods or links and rotating wheels, oscillating pendulum movements, or scissor lifts in shear
- between a machine part and a work-piece, e.g. transfer mechanisms, the tool of a broaching machine.

**Stabbing points**
Stabbing points involve moving parts of machinery or piece of material:

- flying objects, ejection of parts of machinery or ejection of material, e.g. timber ejected from a bench saw
- rapidly moving parts of machinery or pieces of material, e.g. sewing machines, drilling machines.
### Appendix 3 - Risk Assessment Form

Type of machine: ................................................................................................................................................
Identification: ......................................................................................................................................................
Hazard: ........................................................................................................................................................

- On the following chart, circle the most likely harm to a person if the risk happens (along the top).
- Next, circle how often it could happen (down the left hand side).
- The risk priority (score) is the number where the two intersect.

#### Risk Assessment Priority Chart

<table>
<thead>
<tr>
<th>Likelihood: How likely could happen?</th>
<th>Consequences: How severely could it hurt someone?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXTREME death, permanent disablement</td>
</tr>
<tr>
<td></td>
<td>MAJOR serious bodily injury</td>
</tr>
<tr>
<td></td>
<td>MODERATE casualty treatment</td>
</tr>
<tr>
<td></td>
<td>MINOR first aid only, no lost time</td>
</tr>
<tr>
<td>Very likely</td>
<td></td>
</tr>
<tr>
<td>Could happen frequently</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Likely</td>
<td></td>
</tr>
<tr>
<td>Could happen occasionally</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>Could happen but rarely</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Unlikely</td>
<td></td>
</tr>
<tr>
<td>Could happen, probably never will</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

What is the risk priority? (score 1 - 7 from the above chart)

- If you score a 1, 2 or 3 – do something now – consider all applicable control measures.
- If you score 4 or 5 – do something as soon as possible.
- If you score 6 or 7 – does not need immediate attention.

Choose control measures from the highest possible level in the following list:

<table>
<thead>
<tr>
<th>Level 1: Eliminate the hazard</th>
<th>Level 2: Prevent or minimise the risk by one or a combination of:</th>
<th>Level 3: When exposure to the risk is not or cannot be minimised by other means:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Substitute a less hazardous machine</td>
<td>Introduce administrative controls, and use appropriate personal protective equipment</td>
</tr>
<tr>
<td></td>
<td>• Modify the design of the machine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Isolate the machinery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Introduce engineering controls, e.g. guarding</td>
<td></td>
</tr>
</tbody>
</table>
Control measures – action to take:

Now: .................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................

Later (date and action): ...........................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................

In many cases, guarding is the best form of control to manage exposure to risks involving the use of machinery, particularly in many smaller businesses.

This Risk Assessment Form can be used to prioritise the risks identified in a workplace.
## Appendix 4 – Risk Assessment Template

<table>
<thead>
<tr>
<th>Identify risks</th>
<th>Control risks</th>
<th>Assess risks</th>
<th>Implement controls</th>
<th>Monitor and review controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of hazard</td>
<td>Control measures</td>
<td>Action</td>
<td>Score</td>
<td>Related danger zone</td>
</tr>
<tr>
<td>Methods for reviewing and monitoring</td>
<td>Method for implementing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 4 – Risk Assessment Template
Appendix 5 - Australian Standards

Australian Standards are the accepted standards for safeguarding machinery, plant and other issues. They are developed, published and distributed by Standards Australia. Contact details for Standards Australia are:

Standards Australia Limited
286 Sussex Street, Sydney, NSW, 2000
GPO Box 5420, Sydney, NSW, 2001
Telephone: +61 2 8206 6000
Email: mail@standards.org.au
Website: www.standards.org.au

Some of the most useful standards available from Standards Australia relating to machine guarding are listed below. These standards were current at the time of printing. Please contact Standards Australia to ensure that these standards are still current.

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 4024.1 – 1996&lt;br&gt;Safeguarding of machinery&lt;br&gt;- General principles</td>
<td>Sets out the general underlying principles for machine guarding and provides means for identifying hazards and risks arising from the use of machinery during all phases of machine life. Methods for eliminating or reducing these hazards and risks, for safeguarding machines, and for safe working practices are described. Guidelines for assessing the safety measures needed in particular circumstances are provided. It does not provide guidance for safeguarding any particular machine.</td>
</tr>
<tr>
<td>AS 4024.2 – 1998&lt;br&gt;Safeguarding of machinery – Installation &amp; commissioning requirements for electro-sensitive systems&lt;br&gt;- Optoelectronic devices</td>
<td>Specifies requirements for the installation and commissioning of optoelectronic devices which are to be used for machinery safety applications.</td>
</tr>
<tr>
<td>AS 4024.3 – 1998&lt;br&gt;Safeguarding of machinery&lt;br&gt;- Manufacturing and testing requirements for electro-sensitive systems&lt;br&gt;- Optoelectronic devices</td>
<td>Specifies requirements for the manufacture and testing of optoelectronics protective devices which are specifically used for machinery safety applications.</td>
</tr>
<tr>
<td>AS 4024.4 – 1998&lt;br&gt;Safeguarding of machinery – Installation and commissioning requirements for electro-sensitive systems – Pressure-sensitive devices</td>
<td>Specifies requirements for the installation and commissioning of pressure-sensitive mats, floors, edges and bars which are to be used for machinery safety applications.</td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| AS 4024.5 – 1998  
*Safeguarding of machinery  
– Manufacturing and testing requirements for electro-sensitive systems – Pressure-sensitive devices* | Specifies requirements for the manufacture and testing of pressure-sensitive mats, floors, edges and bars which are to be used for machinery safety applications. |
| AS 1219 – 1994  
*Power presses - Safety requirements* | Specifies safety requirements for the design, construction, operation and maintenance of power stamping presses and brake presses. Incorporates details for safeguarding power presses, die design and die setting. Provides recommendations for operation, maintenance and inspection of presses, and the training and supervision of operators. |
| AS 1473 – 1991  
*Guarding and safe use of woodworking machinery* | Specifies minimum requirements for the guarding and safe use of powered machines which cut or abrade wood, wood products and like materials, to be observed by employers, trainers, employees, designers, makers and suppliers of woodworking machinery and other people having an interest in woodworking machine operations. Chainsaws, and machinery used in the milling of raw sawlogs, together with debarkers and log peelers are not covered. |
| AS 1473.1-2000  
*Wood processing machinery  
– Primary timber milling machinery* | Specifies safety requirements for the design, manufacture, guarding and use of milling equipment used for the primary milling of saw logs into green sawn timber products. |
| AS 1473.2 – 2001  
*Woodprocessing machinery  
– Safety – Finishing machinery  
– Common requirements* | Specifies requirements which are common to all classes of wood for the design, manufacture, guarding and use of machines for the manufacture of components for furniture joinery and the like. The standard does not apply to machines used for the primary milling of |
| AS 1473.3 – 2001  
*Woodprocessing machinery  
– Safety – Finishing machinery  
– Circular sawing machines* | Specifies safety requirements for the design, manufacture, safeguarding and use of circular sawing machines used in the manufacture of components for furniture, joinery and the like. To be used in conjunction with AS 1473.2, which contains general safety requirements. |
| AS 1473.4 – 2001  
*Woodprocessing machinery  
– Safety – Finishing machinery  
– Bandsawing machines* | Specifies safety requirements for the design, manufacture, safeguarding and use of bandsawing machines used in the manufacture of components for joinery, furniture and the like. To be used in conjunction with AS 1473.2, which contains general requirements. |
| AS 1473.5 – 2001  
*Woodprocessing machinery  
– Safety – Finishing machinery – Moulding machines and routers with rotating tool* | Specifies the safety requirements for the design, manufacture, safeguarding and use of moulding and routing machines used in the manufacture of components for joinery, furniture and the like. To be read in conjunction with AS 1473.2, which contains general requirements. |
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01145</td>
<td>Proposes the safety requirements for the design, manufacture, safeguarding and use of surface planers and thicknessers, used in the manufacture of components for furniture, joinery and the like. To be read in conjunction with AS 1473.2, which contains general requirements.</td>
</tr>
<tr>
<td>AS/NZS 1677.1 – 1998 Refrigerating systems</td>
<td>Specifies a simple means of referring to common refrigerants instead of using the chemical name, formula, or trade name. It also establishes a uniform system to be used in assigning the proper reference number and classification to refrigerants. The system for refrigerants classification is defined and physical data of common refrigerants listed.</td>
</tr>
<tr>
<td>AS/NZS 1677.2 – 1998 Refrigerating systems</td>
<td>Specifies requirements for the safety aspects, in terms of the design, construction, installation and inspection of refrigerating appliances, systems and ancillary equipment intended for use or installation in institutional, public assembly, residential, commercial and industrial occupancies. It applies to new refrigerating systems, to extensions and modifications of existing systems and to used systems on being reinstalled and operated at another site. It also applies in the case of the conversion of a system for use with another refrigerant.</td>
</tr>
<tr>
<td>AS 1680.1 – 1990 Interior lighting</td>
<td>Specifies general principles and recommendations for the lighting of interiors of buildings. Primarily relates to interiors in which work is undertaken and takes into account both electric lighting and daylight.</td>
</tr>
<tr>
<td>AS 1755 – 2000 Conveyors - Safety requirements</td>
<td>Specifies minimum safety requirements for the design, construction, installation and guarding of conveyors and conveyor systems, both above ground and underground. It does not apply to platform elevators, moving stairways or conveyors specifically designed for the conveyance of people. Provides recommendations for inspection, maintenance, marking and identification, and the training of operators.</td>
</tr>
<tr>
<td>AS 1788.1 - 1987 Abrasive wheels - Design, construction and safeguarding</td>
<td>Specifies requirements for the design and construction of abrasive wheels and the manufacture and installation of abrasive wheels and ancillary equipment. Particular requirements are given for the construction of guards for all equipment fitted with abrasive wheels and for the construction of flanges for use with abrasive wheels. Includes sections covering standard (normal) maximum operating speeds for all types of wheels. Extensively illustrated.</td>
</tr>
<tr>
<td>AS 1788.2 - 1987 Abrasive wheels - Selection, care and use</td>
<td>Specifies requirements for the application and operation of abrasive wheels. Includes sections on the storage, handling and mounting of abrasive wheels, as well as conditions for using special operating speeds. Illustrations of suitable guards and guarding details are included.</td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>AS 1893 – 1977</strong>&lt;br&gt;Code of practice for the guarding &amp; safe use of metal &amp; paper cutting guillotines</td>
<td>Outlines the general requirements for guarding, with specific requirements for the guarding of different types of machines. Fixed, interlocked, automatic and electronic guards are included.</td>
</tr>
<tr>
<td><strong>AS/NZS 2211.1 – 2004</strong>&lt;br&gt;Safety of laser products&lt;br&gt;- Equipment classification, requirements and user’s guide (IEC 60825-1:2001, MOD)</td>
<td>Specifies requirements and procedures designed to protect people from laser radiation. Intended for application both by users and manufacturers of laser products. It specifies safe working levels of optical radiation, classifies lasers according to their degree of hazard and sets out detailed protective and control measures appropriate to each class. A statement on the effect of laser radiation on biological tissues is given in an appendix, and other appendices cover maximum permissible exposures, calculations, a medical surveillance chart, and the design of warning labels and signs. It is based on, but not equivalent to, IEC 825-1:1993.</td>
</tr>
<tr>
<td><strong>AS/NZS 2211.4 – 2002</strong>&lt;br&gt;Safety of laser products - Laser guards</td>
<td>Provides requirements for laser guards, permanent and temporary, which enclose the process zone of a laser processing machine, and specifications for proprietary laser guards. This standard is identical with and has been reproduced from IEC 60825-4:1997.</td>
</tr>
<tr>
<td><strong>AS/NZS 2211.6 – 2002</strong>&lt;br&gt;Safety of laser products - Safety of products with optical sources, exclusively used for visible information transmission to the human eye</td>
<td>Provides an adapted hazard categorisation scheme and specific guidance for the safe use of visible optical sources that are used exclusively for transmission of information to the human eye. This standard is identical with and has been reproduced from IEC TS 60825-6:1999.</td>
</tr>
<tr>
<td><strong>AS 2359.9-1995</strong>&lt;br&gt;Powered industrial trucks&lt;br&gt;- High-lift rider trucks - Overhead guards - Specification and testing</td>
<td>Specifies the requirements and testing for overhead guards designed to protect the operator from falling objects, but not from the impact of a falling load. This standard is technically equivalent with and reproduced from ISO 6055:1979, including Erratum:1980.</td>
</tr>
<tr>
<td><strong>AS 2397 – 1993</strong>&lt;br&gt;Safe use of lasers in the building and construction industry</td>
<td>Sets out safety requirements for the use of lasers in the building and construction industry. Provision has been made for the use of Class 3B (Restricted) lasers where the level of illumination is appropriate. It is intended for use as a reference by people concerned with the use of lasers for alignment, levelling, control and survey tasks in the building and construction industry, and supplements the requirements of AS 2211 relevant to work in that industry. It does not cover the design and manufacture of lasers, nor the use of lasers in other applications.</td>
</tr>
<tr>
<td><strong>AS 2939 – 1987</strong>&lt;br&gt;Industrial robot systems - Safe design and usage</td>
<td>Specifies requirements for the design, construction, safeguarding and installation of industrial robot systems. In addition, requirements are given for the training of personnel. Recommendations for the safe programming, maintenance and operation of industrial robots are also included. The standard is extensively illustrated.</td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| AS 2661 – 1983  
Vapour degreasing plant  
- Design, installation and operation - Safety requirements | Sets out safety requirements for the design, construction and installation of vapour degreasing plant with or without ultrasonic agitation. Provides also recommended methods for the safe operation of such plant and prescribes the inspection and maintenance procedures relevant to the safety of people. Appendices cover a recommended method for plant cleaning, and first aid in emergencies. It does not cover surface treatment processes or aqueous or alkaline degreasing. |
| AS 2958.0 – 2000  
Earth-moving machinery - Safety - General introduction and listing | Provides the introduction to and listing of Australia Standards grouped under the subject heading ‘Safety’. |
| AS 2958.1 – 1995  
Earth-moving machinery  
- Safety - Wheeled machines  
- Brakes | Sets out the minimum performance criteria for service brake systems, secondary brake systems and parking brake systems for operator-controlled, self-propelled earth-moving machines. Applies to rubber-tyred backhoe loaders, dumpers, excavators, graders, loaders, and tractors or tractor scrapers. It includes an appendix setting out requirements for in-service testing. |
| AS 2958.2 – 1988  
Earth-moving machinery  
- Safety - Guards and shields - Definitions and specifications | Gives definitions and specifies characteristics of different guards and shields to protect personnel from accidental hazards due to mechanical, thermal, chemical or electrical causes. Covers both rubber-tyred and track-type off-highway earth-moving machinery, but not ROPS, FOPS and cabs. |
| AS 2958.3 – 1992  
Earth-moving machinery  
- Safety - Roller compactors - Brake systems | Specifies requirements for brake systems that are fitted to self-propelled ride-on roller compactors. |
| AS 3710 – 1989  
Vibration and shock  
- Balancing machines - Enclosures and other safety measures | Specifies requirements for enclosures and other safety measures used to minimise hazards associated with the operation of balancing machines under a variety of rotor and balancing conditions. It defines different classes of protection that enclosures and other protective features provide and describes the limits of applicability for each class of protection. |
| AS 3877 – 1991  
Manipulating industrial robots - Vocabulary | Defines terms relevant to manipulating industrial robots operated in a manufacturing environment. It is identical with and has been reproduced from ISO/TR 8373:1988. |
| AS 3984 – 1991  
Manipulating industrial robots - Performance criteria and related test methods | Describes methods of specifying and testing the performance characteristics of manipulating industrial robots. This standard is identical with and has been reproduced from ISO 9283:1990. |
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
</table>
| AS 3985.1 – 1991  
*Manipulating industrial robots - Mechanical interfaces - Circular (form A)* | Defines the main dimensions, designation and marking for the circular mechanical interface (form A). This standard is identical with and has been reproduced from ISO 9409-1:1988. |
| AS 3986 – 1991  
*Manipulating industrial robots - Coordinate systems and motions* | Defines and specifies three robot coordinate systems. This standard is identical with and has been reproduced from ISO 9787:1990. |
| AS 3987 – 1991  
*Manipulating industrial robots - Presentation of characteristics* | Specifies requirements for how characteristics of robots shall be presented by the manufacturer. This standard is identical with and has been reproduced from ISO 9946:1991. |
| AS/NZS 4486.1 – 1997  
*Playgrounds and playground equipment - Development, installation, inspection, maintenance and operation* | Specifies requirements for the development, installation, inspection, maintenance and operation of playgrounds and playground equipment to ensure a continuing level of function and safety. It also contains requirements for information to be supplied by the manufacturer. |
| AS 61508.1 – 1999  
*Functional safety of electrical/electronic/programmable electronic safety-related systems - General requirements* | Specifies general requirements for a generic approach for all safety lifecycle activities used in electrical/electronic/programmable electronic devices used in safety-related applications. The standard is identical with and has been reproduced from IEC 61508-1:1998. |
| AS 61508.2 – 2001  
*Functional safety of electrical/electronic/programmable electronic safety-related systems - Requirements for electrical/electronic/programmable electronic safety-related systems* | Specifies the safety lifecycle activities in systems comprised of electrical/electronic/programmable electronic devices with the requirements for techniques and measures that are graded against safety integrity levels, for the avoidance and control of faults and failures. |
| AS 61508.3 – 1999  
*Functional safety of electrical/electronic/programmable electronic safety-related systems - Software requirements* | Specifies software requirements for a generic approach for all safety lifecycle activities when applied to safety-related software. The standard is identical with and has been reproduced from IEC 61508-3:1998. |
| AS 61508.4 – 1999  
*Functional safety of electrical/electronic/programmable electronic safety-related systems - Definition and abbreviations* | Provides the definitions and abbreviations used in other parts of this series of standards. The standard is identical with and has been reproduced from IEC 61508-4:1998. |
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
</table>
| AS 61508.5 – 1999  
*Functional safety of electrical/electronic/programmable electronic safety-related systems*  
- *Examples of methods for the determination of safety integrity levels* | Provides information on the concepts and relationship of risk to safety integrity together with methods of determining safety integrity levels. The standard is identical with and has been reproduced from IEC 61508-5:1998. |
| AS 61508.6 – 2001  
*Functional safety of electrical/electronic/programmable electronic safety-related systems*  
- *Guidelines on the application of AS 61508.2 and AS 61508.3* | Specifies the safety lifecycle activities in systems comprised of electrical/electronic/programmable electronic devices with guidelines on the applications, calculations and methodologies as outlined in part 2 and part 3 of this standard. |
| AS 61508.7 – 2001  
*Functional safety of electrical/electronic/programmable electronic safety-related systems* | Specifies the safety lifecycle activities in systems comprised of electrical/electronic/programmable electronic devices with an overview of various safety techniques and measures as outlined in part 2 and in part 3 of this standard. |
| AS/NZS2865:2001  
*Safe working in a confined space* | Sets out the particular requirements and procedures to ensure the health and safety of any people required to enter or work in a confined space. |
| HB 6 – 1999  
*Design standards for mechanical engineering students* | This handbook contains edited extracts from current Australian and British Standards that are of interest to students undertaking studies in mechanical engineering design. It includes extracts of standards concerning drives, structural design, mechanical handling equipment, and safety of machinery, and is intended to be used solely for the purpose of student instruction. |

Australian Standards are available from:
Standards Australia, 55 Little Edward Street, Spring Hill.

Phone (07) 3834 7460 or 1300 654 646
Fax (07) 3834 7461
Guide to safeguarding common machinery and plant
Workplace Health and Safety Queensland